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Electrostatics and optimal arrangement of ionic triangular lattices confined to cylindrical fibers
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We study the optimal packing of triangular ionic lattices on the surface of nanofibers. We compute the
favored orientation of the lattice with respect to the axis of the cylindrical fiber, and we determine the effects
of the surface curvature. Electrostatic interactions prefer chiral arrangements only for special families of
lattices that depend on the fiber diameter. However, there are families of lattices that energetically promote
achiral configurations. Besides the long-range Coulomb interactions we consider the behavior of short-range
elastic forces, represented by interconnected springs between neighboring ions. In this case a different family
of achiral lattices is always preferred. We also show that varying the stoichiometric composition of charges, as
well as including higher-order curvature effects, does not significantly modify such a scenario.
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I. INTRODUCTION

A fundamental question still exists on what the origin of
asymmetry is in biological molecules [1]. Pasteur, in his fa-
mous letter in 1874 [2,3], attributed the apparently omnipres-
ent asymmetry in biological systems to more fundamental
asymmetries of cosmic order (“L’univers est dis-
symétrique”). Yet today it is unclear what the mediator of
these asymmetries is, especially those that operate within the
thermal energy landscape of biological organisms (i.e., not
Kinetically arrested). Even though a majority of biological
molecules and assemblies are known to be asymmetric, no
complete theory has been put forth describing anisotropic
assemblies ubiquitous in biology from chiral assemblies to
helical surface patterns. Broken symmetries such as mirror
symmetry or chirality (i.e., breaking of mirror symmetry) are
known to be essential in the generation of functional mol-
ecules [4]. Some examples include fibrillar [5,6] and spheri-
cal viruses [7], specific directional growth of a extracellular
molecules [8,9], de novo peptide nanotubes [10,11], and syn-
thetic design of biologically inspired supramolecular systems
[12,13].

Tonic pair interactions have been shown to be an essential
element in complex assemblies seen in biomolecular systems
such as F-actin [14], spherical viruses [15], and amyloid
fibril aggregation [16]. The interplay between surface
charges and the surface curvature can lead to several phe-
nomena being observed, such as faceting [17,18], chirality
[19,20], and other packing arrangements [21] including
charged nanopatterns [22,23]. Our aim here is to elucidate
what effect long-range Coulomb interactions have on an
ionic lattice wrapped around cylindrical fibers—the simplest
of curved surfaces. The model we propose compares a vari-
ety achiral and chiral lattices confined to cylindrical geom-
etry and describes how chirality spontaneously arises for
some energetically favorable configurations but, surprisingly,
not all. The model may be useful for describing an emergent
chiral angle due to arrangements of metallic multivalent ions
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condensed along double stranded DNA known to have strong
interactions with specific DNA groups [24-26]. More di-
rectly, we are interested in describing ionic lattice configura-
tions tiled on nanoscale fibers. An important example is the
surface forces between adsorbed charged molecules on car-
bon nanotubes. An understanding of the structure of the ad-
sorbed charges is sought here, though competing anisotropic
interactions such as hydrogen bonding and -7 stacking
could also be important in determining the chiral structure as
well [27-29].

We recently conjectured that chirality can arise at the
nanoscale from the competition of Coulomb and short-range
interactions on a cylindrical surface [20]. In particular, we
described how a lamellar pattern of opposite charged do-
mains on a cylindrical surface prefers chiral arrangements.
Interestingly, even without a competing short-range interac-
tion (described as a line tension), charged stripes on a oppo-
sitely charged cylindrical surface prefer helical configura-
tions [30].

Lamellar patterns are a one-dimensional lattice wrapped
around the nanofiber. In this paper we consider the more
general case of full two-dimensional lattices wrapped around
a cylinder (see Fig. 1). Specifically we address the question
whether electrostatic interactions on a cylinder favor again
chiral arrangements for an ionic assembly. By doing so, one
has to take into account that the cylindrical geometry im-
poses strong commensurability constraints on the two-
dimensional lattice, requiring any possible arrangement to be
uniquely labeled by a pair of integer numbers (known also as
“chiral indices” in connection with carbon nanotubes
[31,32]). However, in order to make a correct and unbiased
comparison between the energies of chiral and achiral con-
figurations at a given fiber radius, we organize all possible
lattice arrangements into suitable “families,” each family be-
ing characterized by a fixed value of the radius. We discuss
how electrostatics govern the energetics among family mem-
bers and favor chiral arrangements only for a special class of
families. Our results show that the interplay between electro-
statics and chirality for a two-dimensional ionic lattice is
quite different from its one-dimensional counterpart, that is,
striped patterns. In particular, we report evidence that the
commensurability constraints effectively inhibit the preferen-
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FIG. 1. (Color online) On the left: a one-dimensional lamellar
lattice, with lattice index n, has a continuous set of chiral angles
[30]. In other words, the commensurability constraint of the lamel-
lar lattice 2R cos w=nL yields one-parameter solutions R(w). On
the right: a two-dimensional lattice, with lattice indices (p;,p,),
when wrapped around a cylinder determines completely both the
radius R and the chiral angle w. The details of the commensurability
constraints are discussed in Sec. II.

tial chiral angle found in the less restricted case of striped
patterns on fibers [20].

In this work we study also the effect of short-range strain
forces over chiral and achiral families. We find that in all
cases strain interactions lead to achiral configurations, which
are however different from the ones obtained by pure elec-
trostatic interactions. We therefore analyze the instability that
arises when combining the two competing effects. The con-
nection between strain and electrostatic interactions in teth-
ered ionic curved surfaces has since long drawn the attention
of the physics community [33]. We analyze here both elec-
trostatics and strain energy effects on an ionic lattice envel-
oping a cylindrical geometry. In planar two-dimensional sys-
tems already such a competition leads to a variety of
behaviors and complex phases [34]. Similarly, strain-
mediated systems on films have long been of interest for
application to semiconductor films [35,36] and to magnetic
systems [37]. In films of binary alloys the competition be-
tween macroscopic phase segregation and strain field is re-
sponsible for the formation of nanopatterns [38]. Binary mix-
tures layered on a substrate may generate strains between the
two lattices. They are a promising tool for designing new
functional nanoscale materials due to their nanopatterning
capacity [39].

We organize the paper in the following manner. Section II
describes the model we use to calculate the electrostatic en-
ergy of a lattice on a cylinder. We present the results in Sec.
IIT for the cases of triangular ionic lattices at 2:1 or 3:1
stoichiometric ratio. Next, in Sec. IV we compare our results
with the ones from a purely elastic model. We also show how
higher-order curvature corrections do not affect our results
substantially. Finally, in Sec. V we comment on possible ap-
plications, limitations, and extensions of our findings.

II. MODEL

A. Cylindrical geometry and constraints

Any lattice on a cylindrical surface can be promptly
mapped onto a two-dimensional periodic plane {x,z} by us-
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FIG. 2. (Color online) A lattice on a cylinder can be projected on
a periodic plane. The lattice vectors on the plane are (a;,a,), with
lattice angle y. We define the chiral angle w as the angle between a,
and the direction X orthogonal to the cylinder axis and tangent to
the cylinder surface.

ing cylindrical coordinates (the Z direction coinciding with
the axis of the cylinder and the X direction being periodic
with 2R period). We assume that such a “unwrapped” lat-
tice is a regular planar lattice, with lattice vectors a;, a,,
lattice angle 7, and a tilt (chiral) angle w between a; and X
(see Fig. 2). The geometrical description of a lattice wrapped
around a cylinder has been widely used in the area of carbon
nanotubes when describing hexagonal graphene lattices [40].
There, the requirement of commensurability of the lattice
with the cylindrical geometry has been shown to lead natu-
rally to the definition of two lattice chiral indices (p;,p,)
[31,32] that completely characterize the carbon nanotube. In
this section we report similar formulas for the generic case of
an oblique lattice since such a case will be used in Sec. IV.

Due to the cylindrical geometry, the lattice must be com-
mensurate when navigating on a circumferential path, that is,
the vector C={0,27R} must belong to the lattice. As a con-
sequence, there exists two integer numbers (p;,p,), the chi-
ral indices, such that C=p;a;+p,a,. By writing the com-
mensurability constraint for each component along x and z,
with a;=a,;{cos w,-sin o} and a,=a,{cos(y—w),sin(y—w)}
(see Fig. 2), we obtain two equations that can be solved with
respect R and w,

et T=a.p; +asp;+2ayapipy cos y, (1)

app+asp, COs vy

- arccos( T) , (2

and 7 is the “triangulation number.” Both the cylinder radius

R, », and chiral angle W, p, are uniquely identified by the

pair (p;,p,). It is straightforward to verify that in the case of
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regular (a;=a,=a) triangular lattice (y=7%) the equations
simplify to

I
_a\pi+pipa+p;
Prpy = 27 :

2pi+py ) 3)

= arccos( /ﬁ
2Np1+pip2tp;

wpl’Pz

and for square lattice y=7,

2.2
axpi+p,
R Y

w0, , = arccos(%). (4)
e VPi+p)

In such two cases, the lattice acquires a periodicity also in
the z direction, that is, it becomes invariant under translations
7z—z+P: for the triangular case, P=an,\3/(2 cos w) and
ny, n, are uniquely determined by n,/n,=—p,/p; such that
they are prime with respect each other; for the square lattice
case, P=an,/cos w and n;, n, are uniquely determined by
ny/ny,=—(p,;+2p,)/ (2p,+p,) such that they are prime with
respect to each other [32].

The reciprocal lattice Q, which will be used in Sec. II B
and it is defined by Q- A=2mm for all lattice vectors A, has
components Q={q,,q.} given by

mipy +nypy
G="" g (5)
(mypy — mypy)esc y+ (mypy — mypy)cot y
q.= R .

(6)

We note that in the reciprocal space the commensurability
condition g R=m;p;+m,p, is independent of y.

When considering a lattice with a basis, as in the cases for
2:1 or 3:1 stoichiometric ratio of charges (see Fig. 3), the
unit cell is defined by the sublattice of positive charges only,
while the negative ones form the basis. Let « be the distance
between a positive charge and a neighboring negative one,
then a=+3a for the 2:1 case, and a=2« for the 3:1 case. For
the rest of this paper we will take a=1 as the unit of length.

We note that the model described in this section has the
feature that the lattice can be wrapped on cylinders with
different radii R while a is kept constant as if the nodes of
the lattice were “glued” over the cylindrical surface at fixed
arc-length distances. Later in this paper we will discuss a
more accurate model where the lattice bonds are fixed
through three-dimensional chords of the cylinder, which pro-
vides corrections of order O(1/R?) to the geometrical ar-
rangement of the lattice.

B. Electrostatic energy

In this section we show how the electrostatic energy of a
cylindrical two-dimensional ionic lattice can be computed by
the standard Ewald summation method [41]. We assume that
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FIG. 3. (Color online) Triangular ionic lattices at 2:1 (on the
left) or 3:1 (on the right) stoichiometric ratios. The arrangement of
charges is different due to unit-cell electroneutrality constraint. The
blue (dark gray) spheres represent negative (—1) charges, while the
red (light gray) spheres represent positive (+2) and (+3) charges on
the left and on the right, respectively.

all charges have the same size, which reflects the choice of
fixing the nearest-neighbor distance equal to a=1. Obvi-
ously, the cylindrical geometry allows the covering lattice to
be regular and without defects, therefore each charge is con-
nected with six (or four) nearest-neighbor charges. The elec-
trostatic interaction of the charges is assumed simply to be
the Coulomb potential. We could have used a different po-
tential, such as a screened Yukawa potential [20]. Although it
has been shown in [30] that chiral configurations can arise
spontaneously both from long-range and screened Coulomb
interactions only when the inverse screening length ¢ and the
lattice constant a are such that &a <1, for simplicity we use
only a Coulomb potential. We impose a global electroneu-
trality constraint, and as mentioned above we consider two
possible cases: a triangular lattice of charges at 2:1 or 3:1
stoichiometric ratio (see Fig. 3). We begin by writing the
electrostatic energy of a two-dimensional ionic lattice,

N
Ejatiice = EE Qiq]'Vij, (7)
ij

where ¢; is the charge at the ith site and Ei’,j conveniently
stands for the double sum with i # j. The three-dimensional
long-range Coulomb potential is

11

=TT,
J 4778Dij

(8)

with & being the homogeneous dielectric constant of the
space outside and inside the cylinder and D; being the three-
dimensional distance (through cords of the cylinder) between
ions on the lattice,

Xi—X;

In our notation, the position p;={R cos #,R sin 0,z} of the
ith ion is written in cylindrical coordinates, and the angles
are parametrized by the arc length x=6R. This is precisely
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the parametrization that maps a three-dimensional problem
into a two-dimensional one. As done in Sec. II A, the initial
cylindrical ionic lattice is mapped onto a two-dimensional
plane {x,z}, periodic along the x direction with periodicity
27R. Let b; be the basis vectors that describe positions of
negative ions inside an electroneutral Wigner cell, with lat-
tice vectors a;, a,. Then, any vector of the lattice has the
form A +b;, with A=n,;a,+n,a,. Since the total electrostatic
energy E,,.i.. diverges for an infinite lattice, we consider the
finite energy per cell E,.,; by setting E,ice=FEcetiNeey (Where
N,,; is the number of cells),

1 1qi4,
Eey=—— 2 “ZLoQmR~|x;-x]).  (10)
87 Ab.b, Dij

The distance D;; is between a charge at position b; in the unit
cell and a charge at position A+b; on the lattice and X'
includes the condition D;; # 0.

We can now employ the standard Ewald summation
method [41] to efficiently calculate E..,;;. We replace 1/D;; in
Eq. (10) with the Gaussian integral representation
2\ 7S gdte"zDizj and subsequently split the integral into a
long-range part and short-range part,

1 , 7 * 2.2
Ecellz— 2 qulf dl+f dti|€_[ ij. (11)
4% Ab;b; 1o n

Similar to Ref. [20], the long-range term of Eq. (11) is writ-
ten in the reciprocal space using the Poisson summation for-
mula. The resulting expression is

1 1 o 1
E.y=——2, 4(Q)4(- N 2
cell = 3 73 AE i(Qi(- Q@ - ﬂmsg ain
+ . > q.qfw dre i (12)
4773/28 A*bivbj r 7 ’

where A.=a; X a, is the area of the unit cell and the Fourier
transforms f‘(Q) and G(Q) are given by

7 2
Q) = f d*pe QP f dte™"Pi, (13)
2 0
Q= 2 gqe ™ (14)
iecell

Equation (11) is independent of 7, thus its value is often
fixed by requiring that the two sums over the real space and
over the reciprocal space have the same rate of convergence.
In Eq. (13), the two-dimensional vector p=(x,z) is bounded
by the cylinder with xe[0,27R] and zeR. The first term in
Eq. (12) accounts for the long-range energy, while the sec-
ond term subtracts the D=0 case from the first term. The

two-dimensional integral in Eq. (13) is evaluated exactly,
2R2772 dt

Q) =Rm" f 7e‘f‘q5’*2/‘2’)1qge(t>, (15)

0

where the function 7,(z) is the modified Bessel function of
the first kind. Due to the lack of a closed form for f‘(Q) and
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for the lattice sums in Eq. (12), we evaluate E,,; numerically.
We choose the value of # in a region where E,,j; is indepen-
dent of 7, i.e., JE,;/ dnp~0 [42]. We include a number of
elements in the sums adaptively by requiring that the numeri-
cal precision is of the order of 1078,

III. RESULTS

In order to establish whether a cylindrical ionic lattice
spontaneously adopts chiral arrangements, we need to com-
pare the electrostatic energy of achiral configurations versus
chiral ones, having the same fiber radius R. We remind here
that all lengths are measured in unit of «, which is the arc-
length distance between a pair of positive-negative neighbor-
ing charges (see Fig. 3), and it is therefore kept fixed
throughout this section. Moreover, we characterize the
chirality of a configuration by the value of the chiral angle w
of the sublattice composed by the positive charges only. Ac-
cordingly, it is easy to verify that the only possible achiral
configurations for a 2:1 or 3:1 triangular ionic lattice are at
w=0 and w=¢ [we limit 0=w=7% since E.  (w+7)
=E, (g -w) and E,,; is periodic with period §]. Any other
configuration with w #0 and w# ¥ is chiral.

At this point it is important to notice that due to the com-
mensurability constraints not all values of the radius R cor-
respond to degenerate achiral and/or chiral lattices. In order
to make a rational comparison we have grouped lattices into
families that contain both achiral and chiral configurations at
the same value of the radius. Namely, since all possible chi-
ral angles w, , andradii R, , are parameterized by the two
chiral indices (p,,p,), we first build a set of all (p,,p,) val-
ues such that each pair in a set corresponds to the same
R, p,- For simplicity, we limit to the case p,=p, since

1y =Tp,p, and the electrostatic energy of right-handed
configurations is always equal to the electrostatic energy of
its left-handed counterpart. Such a choice does not decrease
the generality of our arguments. Equation (1) states that R
T, and therefore a family JF, contains all pairs (p;,p,)
corresponding to the same triangulation number 7. We call
degenerate pairs, any two pairs that belong to the same fam-
ily. From Eq. (3) the pairs that correspond to achiral lattices
are of the form (p,0) or (p,p), and they can be called “arm-
chair” or “zigzag,” respectively [40] (see Fig. 4).

For instance, in the case of a regular triangular lattice,
where T=pl+p3+pp,, the family F,9={(7,0),(5,3)} con-
tains two configurations: one is chiral (5,3,) and the other is
achiral (7,0). Another example is the family F,,={(4,1)}
which contains only one chiral configuration, and it is
not possible to find other configurations with the same
T, i.e., having the same fiber radius. Also the family Fy;
={(9,1),(6,5)} has two elements, both chiral. From these
examples it is evident that when we order the families ac-
cording to their 7 values, we should keep only degenerate
families that contain one achiral configuration and at least an
achiral one. That is so because in order to establish whether
electrostatics favor chiral versus achiral lattices (at a given
radius R), we have to include achiral and chiral configura-
tions in comparison. Otherwise the symmetry breaking
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FIG. 4. There are two achiral triangular lattices on the cylinder:
the armchair (left) and zigzag (right). They have chiral indices
(p,0) and (p,p), respectively. Our notation is only apparently the
opposite of the one commonly used for carbon nanotubes, where
armchair configurations are of type (p,p) and zigzag configurations
are of type (p,0). However, in those cases the lattice is hexagonal,
which is dual to the triangular lattices we consider here.

would be explicit and a consequence of the commensurabil-
ity constraints solely, not of electrostatics. Moreover, it is
straightforward to verify that it is impossible to have a pair
of chiral indices that are degenerate with both armchair (p,0)
and zigzag (p,p) configurations. Thus all the families we
consider belong to two main classes: the class of families F-
that contain armchair configurations and the class F¢ con-
taining zigzag configurations. For instance, when doing the
energy comparison for the above examples, we would not
consider the family F,; since it contains only one elements
and cannot be used for testing, and we would also exclude
the family Fy; since it does not contain any achiral family.
However the family F,y satisfies the requirements, and in
fact it belongs to the class ' containing armchair configu-
rations. In the Appendix we report tables of the elements of
the families 7' and F for all T<10*, both for triangular
cylindrical lattices and for square cylindrical lattices.

We evaluate E,,; from Egs. (12), (14), and (15) for all
possible pairs of chiral indices (p;,p,) with 0=p,=p,
=100. Through direct comparison of the numerical values of
E.,; within the members of each family, we determine
whether the lattice over the cylinder prefers to be chiral or
not. Our results for the 2:1 stoichiometric case are summa-
rized in Fig. 5, where all possible pairs of chiral indices
(p1,p,) are represented as dots in the plane {w,E}. For the
sake of completeness, we evaluated the electrostatic energy
also for all the nondegenerate configurations. The configura-
tions that are degenerate are joined by a line, thus visually
identifying all members within a given family (i.e., fibers at
fixed radius). The “crowding” of lines at the top of the figure
is a consequence of the fact that by increasing p; and p,, the
radius increases rapidly. The corresponding energy quickly
tends to the value of the Madelung energy for a planar ionic
lattice, which in the case of a 2:1 stoichiometric ratio is
E,.,=-4.6265. For clarification, we show in Fig. 6 a mag-
nified version of the lower part of Fig. 5, that is in the region
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FIG. 5. (Color online) In this plot, each dot represents a (p;,p,)
configuration with 0=p,=p, =100, in the plane {w, E}, for a tri-
angular ionic lattice at 2:1 stoichiometric ratio. The lines join con-
figurations that belong to the same family (i.e., they can be wrapped
on cylinders with the same radius).

at small radii. The values of the pairs (p;,p,) are explicitly
indicated. All the armchair configurations of type (p,0) cor-
respond to w=0 while all the zigzag configurations of type
(p,p) correspond to w=1/6. All other configurations are
chiral. One can clearly see the three types of families we
mentioned above: the first type is the one with families made
of a single element, and as such they are not useful for ad-
dressing the issue of chiral instability. The second type is one
of the families having two or more elements, but no achiral
elements of type (p,0) or (p,p). The third type is given by
families that are degenerate with either armchair (p,0) or
zigzag (p,p) and never with both since that would be impos-
sible. A common feature of all families with degenerate ele-
ments is that configurations with larger w have lower energy.
In other words all the lines have negative slope. We verified
this fact for all the configurations in Fig. 5. The main conse-
quence of this finding is that the lowest-energy configuration
for families of type F is achiral zigzag configuration [i.e.,
of type (p,p)], whereas the lowest-energy configuration for
families of type F" is chiral [i.e., of type (p,0)]. This means
that long-range electrostatic interactions can induce sponta-
neous chirality of cylindrical ionic lattices depending on the

Ecell w
0.0 0.1 02 03 0.4 05
—462T5 [ e
(160 4107 80100 9)
(150 013 10140 35T T30 TP5, ST 70100 8020
46280 [ ( 14t L) 13 XTIt 8)
’ (13 1) C12e37 8 6) (967 ) (8e8
P (129.2) (1le4)
(1 — R (1005) (006 gu7)
] . mwc-ad
74.62857(12-0)( )(11 10°%) (005) (guer cq.7
(Mot (10:3) —e
(110 0) (100 2) ' (8es) (706)
~4.6290 (100 1) O e
(100 0) (902) (7¢5) (et
6251 w*ﬁ_
7 e4)
(9¢0) (8e2) 5)
~4.6300 -

FIG. 6. (Color online) This figure is a magnification of the lower
region of the diagram in Fig. 5. For clarity, the configurations are
labeled by their chiral indices (p;,p,).
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FIG. 7. (Color online) JE,,;/ dw is plotted on logarithmic scales
versus the triangulation number 7 for the 2:1 ionic ratio. The
power-law fitting E_,;,(w) ~ T (solid line) gives a scaling exponent
of y=-2.09+0.03. The radius R scale with T as R~ \T.

value of the radius. However, as the radius increases also the
number of elements in each family FU increases, with chiral
angles that are closer and closer to /6 (but never equal).
Therefore, such special chiral configurations are relevant at
small R. Furthermore, at large radii the system quickly con-
verges toward an isotropic planar ionic lattice. That is why
the slope of the lines in Figs. 5 and 6 goes to zero at large
radii. Such a behavior follows a power law, as we show in
Fig. 7. The slopes JE,,;/ dw are computed for each family Fr
containing at least two elements, and they are plotted versus
the triangulation number 7 of that family. For the case of 2:1
stoichiometric ratio we find JE,,;/dw~R™*. Analogously,
we verified that E,,;;~ R™? up to subleading logarithmic cor-
rections. This is consistent with an achiral term at the order
O(R™?) in the large-R asymptotics.

We also find that the results for the 3:1 case are com-
pletely similar to the one for the 2:1 case. The only differ-
ence is a shift in the value of the energies due to a different
value of the Madelung constant at large R, which is Ej3;
=-8.42. Such a shift does not alter the fact that an ionic
lattices at 3:1 stoichiometric ratio prefers to adopt zigzag
(p,p) configurations when the commensurability constraints
allow it. For those reasons we do not reproduce here the
plots for the 3:1 case, being qualitatively identical to the 2:1
case.

For a 1:1 square ionic lattice, we found again a behavior
completely similar to the 2:1 case, with the only difference
that the energy minima at zigzag configurations (p,p) are at
an angle w=m/4 and the Madelung energy at large R is
El:l ==-1.615.

IV. DISCUSSION

The main result of Sec. III is that electrostatics can still
favor chiral configurations but not in all cases. Whether the
energy is the lowest for chiral or achiral structures, it all
depends on the specific value of the fiber radius R. If R is
such that its family contains zigzag configurations, then the
lowest energy is a zigzag configuration. If however R is such
that the family belongs to the armchair configuration, then
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the lowest energy is a chiral configuration. Furthermore, in
case there are several chiral configurations that are degener-
ate with a armchair achiral configuration, the configuration
with the largest chiral angle (i.e., closer to 7/6) is the pre-
ferred one. We do not find much qualitative difference be-
tween the 2:1 or 3:1 ionic lattice, and besides an expected
energy shift, they behave identically.

These results are interesting because they are substantially
different from the effect of electrostatics on a lattice of
charged stripes around the cylinder [20,30]. In fact, in the
latter case, which is effectively a one-dimensional lattice, not
only electrostatics yield chiral configurations but also a “uni-
versal” chiral limit angle w*=arccosy3/5 appears at large R.
In the present two-dimensional case however chirality is not
always preferred, and even when it does the chiral angle
seems to go to 7/6 at large R.

We posit here a possible explanation for such a different
behavior. The strong influence that the family class type (i.e.,
the cylinder radius) has on the chiral or achiral fate of the
ionic lattice and the discrete discontinuous nature of the two-
dimensional system indicates that the main responsibility for
such a behavior is from the commensurability constraints. As
we mentioned above, both the radius RI,,I,,,2 and the chiral
angle W, p, AssumMe values over a discrete set and not over a
continuous interval as it occurs for the one-dimensional case.
In [20], it has been shown that the large-R asymptotic expan-
sion of the Fourier transform of the Coulomb potential has a
minimum at w=w". This mathematical fact is independent
from the particular chosen distribution of charges over the
cylinder. The minima of Eq. (7) at large R generally depend
on both the functional form of the potential and the specific
chosen surface charge distribution. However the minimiza-
tion in the one-dimensional case for striped cylindrical pat-
terns is over a continuous set [the single commensurability
constraint 277R cos w=nL has a one-parameter family of so-
lutions R(w)], while in the two-dimensional case the minimi-
zation is over a discrete set of points (i.e., over the members
of each family). In the latter case, the minima of Ej,;., can-
not freely “fall” onto the minima of the Coulomb potential
(in the reciprocal space) because of the discreteness of the
configuration space due to the strong commensurability con-
straints. When R is large, the commensurability constraints
vanish gradually, but the discrete nature of the space of pos-
sible configurations remains, and the two nonintersecting
classes of families F¢ and F- become dense in each other,
meaning that the chirality at large R disappears in a discon-
tinuous way. Such a problem is not present in the one-
dimensional case and, as shown in [20], all energy minima at
large-R tend to fall smoothly on the limiting value w=w". If
this interpretation is correct, then the chiral or achiral behav-
ior of a discrete two-dimensional cylindrical ionic lattice
should be relatively independent of the interaction potential,
and similar results should hold also for two-dimensional lat-
tices with short-range interactions. In Secs. IV A and IV B
we test this hypothesis by considering (i) a simple model of
a triangular network of elastic springs rolled around the cyl-
inder and (ii) the effect of higher-order curvature corrections
to this scenario.
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FIG. 8. (Color online) This figure shows a plot analogous to the
ones in Figs. 5 and 6 but for a triangular lattice of particles inter-
acting via purely elastic harmonic forces, with /=1. The plot is
obtained for k=100 and for comparison the elastic energy of the
lattice was calculated on per cell basis for the 2:1 charge ratio.

A. Adding elastic interactions

The fact that short-range interactions can induce chiral
configurations in cylindrical geometries has been described
in several numerical and theoretical works [4,43-45]. In this
section we focus on a cylindrical lattice of particles that are
interacting via short-range (nearest-neighbor) elastic forces.
More precisely each particle on the triangular lattice is per-
manently connected to its six neighbors via harmonic
springs, with spring constant k. The springs are massless and
have length /=0 for the sake of generality. The elastic en-
ergy per unit cell is

Eel(k) 2 (Dlj s (]6)
<1J>

where D;; is given in Eq. (9) and the sum is over all neigh-
boring part1cles (i,j) per unit cell. The evaluation of the en-
ergy E,; is straightforward, and being local it does not re-
quire the Ewald summation method. The typical results are
presented in Fig. 8, and show that short-range elastic inter-
actions alone have a similar behavior to the one described in
Sec. III. Furthermore, we repeated the calculations of this
section both at finite / and /=0 and also for a repulsive-
attractive Lennard-Jones potential. In all cases we found a
behavior similar to the one in Fig. 8. The main difference
between the elastic case and the case with Coulomb interac-
tions is that for 0=w= /6, E,, increases with w in the 2:1
case (within a given family at fixed R), while it decreases
with w in the 1:1 and 3:1 case. This fact should not come as
a surprise since the unit cells of the 2:1 case and 3:1 case are
rotated of 7/6 with respect to each other when considering
the underlying triangular lattice of all charges, positive and
negative. Since the elastic energy in Eq. (16) is independent
from the charge distribution, one can anticipate that the be-
havior of E,; for the 3:1 case for 0=w= /6 is equal to the
behavior of E,; for the 2:1 case for m/6 < w= /3 (hence the
opposite slope). We can therefore focus on the 2:1 case,
without loss of generality. In such a case, a positive slope
means that the lowest-energy configuration is achiral (p,0)
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for the class 7 and chiral for the class F°. This behavior is
opposite to the one observed for long-range electrostatic
forces in the 2:1 case. We therefore consider a model that
combines the two effects, with an energy function E,,,
=E,. +E,(k)=E,,;+kE,(1). We use k as a control param-
eter for the relative strength of the elastic energy with respect
to the electrostatic energy. Since E,,,,; is a simple linear com-
bination, its minimization is straightforward. We find that
E, .. presents an instability, which depends on the value of
R. Namely, given a family of configurations that correspond
to a given value of R, it is possible to fine tune k such that
each one of the family member can be a minimum for E, ;.
However such a fine-tune procedure is R dependent, and the
range of values of k for that to happen varies from family to
family. The specific chiral indices and the number of mem-
bers in each family have a number-theoretic nature and it is
hard to extrapolate universal trends. Therefore, for the fami-
lies we considered in this paper (see list in the Appendix
section), we could not draw any general conclusion on the
behavior of k with the radius R or with the chiral indices
(p1,p2)- The only systematic observation we can make is that
for a generic values of k the scenario of Sec. III is not modi-
fied by adding short-range interactions. Achiral configura-
tions dominate for most values of k, which one, whether
(p,p) kind or (p,0) kind, depends only on the relative
strength of the long-range interaction versus the short-range
interaction. This behavior is again different from what we
observed in one-dimensional striped patterns on a cylinder,
where even when including short-range interactions (such as
line tension term), chiral configurations arise spontaneously
and without any fine tune of the elastic forces.

It is interesting to note that in the 3:1 case the electrostatic
energy and the elastic energy have negative slopes as a func-
tion of w in the interval 0=w= /6, and therefore the
minima are always at the achiral zigzag configurations of
type (p,0) whenever possible. The same situation applies for
the 1:1 case.

Despite of the different behaviors, in both the 2:1 and 3:1
cases the curvature of the cylinder has a crucial role in se-
lecting achiral configurations of armchair or zigzag types for
elastic forces (in the 2:1 or 3:1 case, respectively) and of
zigzag type for electrostatics. In Sec. IV B we therefore in-
clude higher-order curvature effects in our model, such as the
ones that arise by imposing a fixed three-dimensional bond-
distance between nearest neighbors.

B. Adding higher-order curvature corrections

Higher-order curvature effects of cylindrical lattices are
important at small values of the cylinder radius and have
been considered in a number of papers (see, e.g., [46-48]).
These effects take into account the more realistic situation
where the charges fully pack the surface of the cylinder
while the three-dimensional hard-core repulsion between
neighbors does not glue them on the surface, so that they can
distribute freely according to the cylinder curvature. The
model we consider is an adaptation from Cox and Hill [46],
where the authors described how one can keep three-
dimensional bond lengths fixed on a hexagonal lattice rolled
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TABLE 1. Lattice parameters a;, a,, ¥, w.

PHYSICAL REVIEW E 80, 051503 (2009)

TABLE II. Chirality of 2:1 triangular lattices over a cylinder.

Parameter 2:1 3:1 T (p1,p2) ® E.. Chiral?
a Vi+Vy 2V| (7,7) /6 -4.69
a, 2v,-v, 2v, 147 (11,2) 0.151 -458 N
y arccos | 1(;:—{:0:0:1“ T (21,0) 0 -4.61
_. 0 441 (15,9) 0.39 -4.68 Y
o arccos% Q (13,13) /6 -4.70
507 (22,1) 0.04 -4.60 N
. . . . . . 14,14 /6 -4.70
around a cylinder. This model still requires a pair of chiral ssg (22 4) (7)715 157 N
indices (p,,p,) that define the orientation of the lattice. Any (224) : -
point P on the cylinder can be described by cylindrical co- (33,0) 0 —4.61
ordinates {, 8}, such that P(i,8)=R cos yK+R sin ¢y (32,2) 0.05 -4.61
+RpBZ. For convenience B measures z in units of R, and the 1089 (22,16) 0.44 —4.71 Y

origin is at O=P(0,0)=RzZ. Let the two lattice vectors be
A=P(i,,B,) and B=P(¢,[3,). The commensurability con-
ditions are

pii+poy =2, p1Bi+pBr=0. (17)

Moreover, the fixed-bond length condition requires the tri-
angle AOAB to be equilateral (for details see Ref. [46]),

OA=AB, OA=OB. (18)

The four unknown parameters i, ¢,, B;, B, that describe
the lattice on the cylinder can be determined uniquely by
solving the four equations [Egs. (17) and (18)]. The solution
defines a two-dimensional lattice with lattice vectors v, v,,
lattice angle T, and chiral angle () given by

vi={Ry1.RB,},  Vo={Riyn.RB,}, (19)
= arccos( V1 ¥2 ), (20)
vi|v2|
Q=arccos<Vl ﬁ) (21)
|V1|

Such a lattice represents all possible positions of charges
over the cylinder surface under the given constraints. We
note that while the conditions [Eq. (18)] impose that ||
=|v,|, the lattice is in general oblique and not triangular (i.e.,
I' # m/3). Moreover, when considering different ionic ratios
2:1 and 3:1 while maintaining electroneutrality, it is once
again convenient to use the sublattice of positive charges
only, with lattice parameters a;, a, lattice angle vy, and chiral
angle w. The relations among the parameters of the positive
charge sublattice and the lattice of all possible positions are
shown in Table I.

With the lattice parameters in hand we can now input
them into E,,; in Eq. (12) and minimize the lattice energy
with respect to w. The minimization cannot be performed at
fixed cylinder radius this time. The reason is that it is no
longer possible to find two pairs of chiral indices that are
degenerate. In order to compare the energies, we have to
relax the condition of fixed radius and compare configura-
tions that belong to cylinders with radii that differ from one
another within a factor that we fix at 1%. The choice of such

a cutoff is arbitrary, and different choices would lead to dif-
ferent results. Our main purpose here is to check whether
chiral configurations can arise spontaneously by including
higher-order curvature correction terms, at least qualitatively,
and not to provide a complete classification and characteriza-
tion of chiral and not chiral configurations for fixed-bond
cylindrical lattices. Some typical values of the energies are
shown in Table II. The situation is similar to the one de-
scribed previously. We find chiral configuration only for
families that include a zigzag (p,p) configuration, and oth-
erwise the system prefers to be achiral with armchair (p,0)
configurations.

Because of this negative result, we decide therefore to not
explore further this case. We considered different cutoff val-
ues and always found that at small radii higher-order curva-
ture corrections do not change the above scenario as far as
chiral configurations are concerned.

V. CONCLUSIONS

In this paper we considered a simple model for studying
whether electrostatic interactions can induce chiral configu-
rations of an ionic lattice wrapped around a cylinder. The
motivation stems from a similar study [20] where a one-
dimensional lattice of charged stripes on a cylinder prefers
chiral configurations due to long-range electrostatics. We
find that in the two-dimensional case the behavior is differ-
ent. We find that the ionic lattice adopts achiral zigzag (p,p)
configurations as long as the commensurability condition al-
lows. In other words, at larger radii the lattice is able to
choose from a grower set of configurations and tends to
adopt the configuration which is as close as possible to a
(p,p) configuration with w=/6. We also observed that for
families containing armchair (p,0) configurations, the lowest
energy is given by chiral configurations. As R increases the
energetic differences between the families are attenuated by
a power-law scaling as 9E,,;/ do=R*. This shows that al-
though the electrostatic potential has a nonvanishing 1/R?
chiral term in the asymptotic 1/R expansion [20], such term
is suppressed in E,,;. The double summation over the recip-
rocal space in Eq. (12) and the commensurability conditions
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together destroy the instability that lead instead to spontane-
ous chiral configurations for one-dimensional striped pat-
terns [20]. Changing the stoichiometric ratio, introducing
elastic forces, or higher-order curvature corrections does not
modify the situation very significantly. Therefore, we set
forth the hypothesis that the main hindrance preventing
spontaneous chirality of two-dimensional lattices is the com-
mensurability constraint. That is, in the case of charged
stripes wrapped around a cylinder the commensurability con-
straint has a one-parameter family of solutions, while the
two-dimensional case has a discrete set of solutions (i.e.,
zero dimension). Thus, in the one-dimensional case the chiral
angle and R can vary continuously, while in ionic lattices can
only have discrete sets of chiral angles and fiber radii R. In
the former case, the energy minimum coincides with the chi-
ral minima of the Fourier transform of the electrostatic po-
tential, while in the latter case that is not possible. A possible
solution could be reintroduce a continuum degree of freedom
on the two-dimensional ionic lattice, such as a unit cell that
has some directionality (e.g., elliptic particles) or dipolar in-
teractions. Our results do not exclude that other types of
potentials might produce spontaneous chiral configurations.
The Tersoff-Brenner potential is an example that includes
empirical bond ordering [49], which is successfully used in
describing covalently bonded carbon atoms of the graphene
lattice of carbon nanotubes. Such a potential, while self-
consistently describing a diverse set of bonded atoms, con-
tains an anisotropic part that can be tuned to modulate the
nanotube chirality [50]. However, in this work we limit to
the study of isotropic interactions, and generalizations will
be considered elsewhere. We note that the two-dimensional
commensurability constraint may have consequences in sys-
tems where nanopatterns arise on cylindrical surfaces. For
example, charged cationic-anionic lipids that coassemble
into fibers can form nanopatterns of hexagonally arranged
domains rich in one charged component due to competition
between the repulsive charge accumulation and the short-
range immiscibility [51], as well as lamellar patterns [20].
Achiral hexagonal nanopatterns were previously analyzed
[51], and it was found that hexagonal domains discontinu-
ously adopt lamellar patterns at small R due to the commen-
surability restriction, while a fiber with lamellar patterns can
simply coarsen as R decreases satisfying commensurability
automatically. Since in this paper we show that pure elastic
interactions give only achiral configurations, we propose that
the enhancement of lamellar patterns on cylinders will be
observed in other nanostructures on cylindrical surfaces,
such as those in incompatible alloys with competing strain
(or stress) and a line tension forces [52] or lipids with com-
peting interactions [53,54]. In other words, since the effec-
tive interactions change when the surface is curved, the equi-
librium periodicities are a function of the radius R and they
can shrink or coarsen depending on the nature of the inter-
actions (even when keeping a constant solid angle per mol-
ecule). Further, the geometrical restrictions of a hexagonal
lattice when folded onto a cylinder are difficult to satisfy for
arbitrary periodicities without involving costly energetic de-
fects, while a lamellar structure is preferred on the surface of
cylinders because it has less constraints to accommodate

PHYSICAL REVIEW E 80, 051503 (2009)

TABLE III. Zigzag families F° of triangular lattices for T
=10*%

147 (7,7), (11, 2) 4107 (37, 37), (47, 26)
507 (13,13),(22,1) 4332 (38, 38), (52, 22)
588 (14, 14), (22,4) 4563 (39, 39), (66, 3)
1083 (19, 19), (26, 11) 5292 (42, 42), (66, 12)
1323 (21,21),(33,6) 5547 (43, 43), (61, 22)

2028 (26, 20), (44,2) 7203
2352 (28, 28), (44, 8) 8112
2883 (31, 31), (46, 13) 9408
3675 (35, 35), (55, 10) 9747

(49, 49), (71, 23), (77, 14)
(52, 52), (88, 4)
(56, 56), (88, 16)
(57, 57), (78, 33)

arbitrary period structure, as described in Ref. [51], for the
case of incompatible cationic-anionic molecules.

It is important at this point to make some physical con-
sideration. Our model is derived under the framework of an
ionic lattice that is in thermodynamic equilibrium with an
aqueous environment. We assume the counterions are con-
densed on the surface in order to screen the charge since here
we assume no screening from the solution—a salt—free
case. The effect of the curvature of the double layer over the
cylinder’s surface was neglected [55]. Further, the model
does not consider the effect of counterion mediated polariza-
tion or short-range attractions due to neighboring charged
rodlike polymers [56,57] and polyanionic assemblies such as
DNA [58-60] and actin filaments [61,62]. Interestingly, the
adsorption of polyelectrolytes on the surface of a charged
nanofiber can lead to helical wrappings, which have been
observed in numerous systems [63], and it was an area we

TABLE IV. Armchair families 7 of triangular lattices for T
=10%

49 (5, 3), (7, 0) 3969 (45, 27), (63, 0)
169 (8, 7), (13, 0) 4225 (40, 35), (65, 0)
196 (10, 6), (14, 0) 4489 (45, 32), (67, 0)
361 (16, 5), (19, 0) 4900 (50, 30), (70, 0)
441 (15, 9), (21, 0) 5329 (63, 17), (73, 0)
676 (16, 14), (26, 0) 5476 (66, 14), (74, 0)
784 (20, 12), (28, 0) 5776 (64, 20), (76, 0)
961 (24, 11), (31, 0) 5929 (55, 33), (77, 0)

1225 (25, 15), (35, 0) 6084 (48, 42), (78, 0)
1369 (33, 7), (37, 0) 6241 (51, 40), (79, 0)
1444 (32, 10), (38, 0) 7056 (60, 36), (84, 0)
1521 (24, 21), (39, 0) 7396 (70, 26), (86, 0)
1764 (30, 18), (42, 0) 8281 (56, 49), (65, 39),

1849 (35, 13), (43, 0)
2401 (35, 21), (39, 16), (49, 0) 8649

(80, 19), (85, 11), (91, 0)
(72, 33), (93, 0)

2704 (32, 28), (52, 0) 9025 (80, 25), (95, 0)
3136 (40, 24), (56, 0) 9409 (57, 55), (97, 0)
3249 (48, 15), (57, 0) 9604 (70, 42), (78, 32)

3721 (56, 9), (61, 0)
3844 (48, 22), (62, 0)

(98, 0)
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TABLE V. Armchair families of square lattices for 7= 10*.

PHYSICAL REVIEW E 80, 051503 (2009)

TABLE VI. Zigzag families of square lattices for 7< 10*,

25 4, 3), (5,0) 3600 (48, 36), (60, 0)

100 (8, 6), (10, 0) 3721 (60, 11), (61, 0)

169 (12, 5), (13, 0) 4225 (52, 39), (56, 33),
225 (12, 9), (15, 0) (60, 25), (63, 16), (65, 0)

289 (15, 8), (17, 0) 4624
400 (16, 12), (20, 0) 4900
625 (20, 15), (24, 7), (25, 0) 5329

(60, 32), (68, 0)
(56, 42), (70, 0)
(55, 48), (73, 0)

676 (24, 10), (26, 0) 5476 (70, 24), (74, 0)
841 (21, 20), (29, 0) 5625 (60, 45), (72, 21), (75, 0)
900 (24, 18), (30, 0) 6084 (72, 30), (78, 0)
1156 (30, 16), (34, 0) 6400 (64, 48), (80, 0)
1225 (28, 21), (35, 0) 6724 (80, 18), (82, 0)
1369 (35, 12), (37, 0) 7225 (68, 51), (75, 40),
1521 (36, 15), (39, 0) (77, 36), (84, 13), (85, 0)
1600 (32, 24), (40, 0) 7569 (63, 60), (87, 0)
1681 (40, 9), (41, 0) 7921 (80, 39), (89, 0)
2025 (36, 27), (45, 0) 8100 (72, 54), (90, 0)
2500 (40, 30), (48, 14), (50, 0) 8281 (84, 35), (91, 0)
2601 (45, 24), (51, 0) 9025 (76, 57), (95, 0)
2704 (48, 20), (52, 0) 9409 (72, 65), (97, 0)

2809 (45, 28), (53, 0) 10000
3025 (44, 33), (55, 0)

3364 (42, 40), (58, 0)

(80, 60), (96, 28),
(100, 0)

considered in a previous work [30]. The model is defined
under the condition that the inverse screening length is very
short compared with the inverse bond length. While for
lamellar patterns in Refs. [20,30] the screening length is
the controlling the length scale, our focus in this paper is
with the minimization of the energy with the lattice orienta-
tion. Moreover the lattice is chosen with an equal-length lat-
tice vectors, such that no direction had a preselected asym-
metry assigned to it. Our model can be extended to include
other Bravais lattices and charge stoichiometric ratios. An
even more interesting generalization would be to consider a
unit-cell charge distribution that interpolates between circu-
lar domains and elongated directional (e.g., elliptical) do-
mains, thereby locating the crossover point from the two-

50 (5,5), (7, 1) 3200

200 (10, 10), (14, 2) 3362 (41, 41), (49, 31)

338 (13, 13), (17, 7) 4050 (45, 45), (63, 9)

450 (15, 15), (21, 3) 5000 (50, 50), (62, 34), (70, 10)

578 (17, 17), (23, 7) 5202 (51, 51), (69, 21)

800 (20, 20), (28, 4) 5408 (52, 52), (68, 28)
1250 (25, 25), (31, 17), (35, 5) 5618 (53, 53), (73, 17)
1352 (26, 26), (34, 14) 6050 (55, 55), (77, 11)
1682 (29, 29), (41, 1) 6728 (58, 58), (82, 2)
1800 (30, 30), (42, 6) 7200 (60, 60), (84, 12)
2312 (34, 34), (46, 14) 7442 (61, 61), (71, 49)
2450 (35, 35), (49, 7) 8450 (65, 65), (79, 47),
2738 (37, 37), (47, 23) (85, 35), (89, 23), (91, 13)
3042 (39, 39), (51, 21) 9248 (68, 68), (92, 28)

9800 (70, 70), (98, 14)

(40, 40), (56, 8)

dimensional achiral ionic lattices and the one-dimensional
helical ones, solely due to the Coulomb electrostatic poten-
tial. We postpone this discussion to a future publication.
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APPENDIX

In this appendix we report Tables III-VI with degenerate
families for the triangular lattice (where T=pi+p3+pp,)
and the square lattice (where T=p?+p3). In both cases, the
families are separated in two classes: the armchair families
F5 and the zigzag families F©. We reiterate that here we list
only the pairs of chiral indices (p;,p,) with p;=p, because
the electrostatic energy of any (p;,p,) configuration is the
same of the corresponding (p,,p;) configuration.
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